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Fermion ± Antifermion Condensate Contribution to
the Anomalous Magnetic Moment of a
Fundamental Dirac Fermion
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We consider the contribution of fermion ±antifermion condensates to the
anomalous magnetic moment of a fermion in a vacuum in which such condensates
exist. The real part of the condensate contribution to the anomalous magnetic
moment is shown to be zero. A nonzero imaginary part is obtained below the
kinematic threshold for intermediate fermion ±antifermion pairs. The calculation
is shown to be gauge-parameter independent provided a single fermion mass
characterizes both the fermion propagator and condensate-sensitiv e contributions,
suggestive of a dynamically generated fermion mass. The nonzero imaginary part
is then argued to correspond to the kinematic production of the intermediate-
state Goldstone bosons anticipated from a chiral-noninvar iant vacuum. Finally,
speculations are presented concerning the applicability of these results to quark
electromagnetic properties.

1. INTRODUCTION

One of the key distinctions between quantum electrodynamics (QED)

and quantum chromodynamics (QCD), field theories of known-interaction

physics with unbroken gauge symmetry, is the existence of QCD-vacuum

condensates, a distinction that has not been adequately linked to the nonabelian

character of the latter theory. In particular, the quark±antiquark condensate
^ qq & characterizes the chiral noninvariance of the QCD vacuum; QED has

no corresponding electron±positron condensate. Although a dynamical break-

down in chiral invariance can be linked to a criticality threshold in the size

of the gauge coupling constant (Higashijima, 1984), such an argument might
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in and of itself suggest the possible existence of an electron±positron conden-

sate in the electromagnetic potential of atomic nuclei with sufficiently large

atomic number. In such a scenario, the only linkage between the nonabelian
character of QCD and the existence of vacuum condensates would be the

large size of the running QCD coupling constant anticipated in the low-

momentum (static-quark) limit.

It is therefore of interest to explore whether the existence of such a

condensate might alter well-understood static fermion properties of QED. In

QCD, particularly QCD sum-rule applications (Shifman et al., 1979), such
condensates characterize the vacuum expectation values of normal ordered

products of fields (Pascual and Tarrach, 1984). For example (Elias et al.,
1988; Yndurain, 1989), the quark±antiquark condensate characterizes the

QCD vacuum expectation value

^ 0 | : c a
i (y) c b

j (z): | 0 & 5 2
d ab

3
^ qq & o

`

r 5 0
Cr[ 2 im g m ( y m 2 z m )]r

ij (1.1a)

Cr 5 5
1

(r /2)![(r 1 2)/2]!2 r 1 2 , r even

1

[(r 2 1)/2]![(r 1 3)/2]!2 r 1 2 , r odd

(1.1b)

i, j are Dirac indices and a, b are color indices. In principle, every Feynman
amplitude whose Wick±Dyson expansion of time-ordered fields contains

a term in which a fermion and antifermion field are contracted to form

a propagator,

c a
i (y) c b

j

| |
(z) 5 ^ 0 | T c a

i (y) c b
j (z) | 0 & 5 # d 4p

(2 p )4 e 2 ip ? ( y 2 z)[SF( p)]ab
ij (1.2)

also contains a not fully contracted term containing (1.1). It is precisely

through such terms, methodologically, that QCD-vacuum condensates are

introduced into the field-theoretic side of sum-rule calculations (Pascual
and Tarrach, 1984). It should be noted that the only signature of nonabelian

physics in the derivation of (1.1) is an overall color summation factor of

3 ( 5 d aa) in the denominator, a factor that can easily be absorbed in a

redefinition of the fermion±antifermion condensate ^ ff & for the abelian

case. [We will define ^ ff & henceforth such that d ab ^ qq & ® ^ ff & in (1.1a).]

The result (1.1) can be otherwise understood as a solution to the free
Dirac equation with the condensate entering through an appropriately

chosen initial condition (Yndurain, 1989). This nonzero condensate is a

reflection of the nonperturbat ive content of the vacuum. Normal-ordered

fields necessarily annihilate a purely-perturbative vacuum, which is why
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vacuum expectation values like the left-hand side of (1.1) are not incorpo-

rated into standard QED calculations, but are incorporated into the field-

theoretic content of QCD sum rules.
In this paper, we address whether the explicit fermion±antifermion con-

densate contribution to the anomalous QED magnetic moment of a fermion

field is calculable through use of field-theoretic techniques for this contribu-

tion (Bagan et al., 1993, 1994) adapted from QCD sum-rule applications.

We are motivated to examine this particular property because it can be easily

extracted from the leading corrections to the unrenormalized electromagnetic
vertex function without reference to self-energy, vacuum polarization, or

bremsstrahlung graphs that enter into the determination of electromagnetic

form-factor slopes.

In Section 2 we provide a brief methodological review of how the

anomalous magnetic moment _F2(0) of a Dirac fermion with mass m is

calculated in (purely) perturbative QED. In Section 3, we modify this calcula-
tion, as indicated above, by including the contribution of vacuum expectation

values (1.1) in the Wick±Dyson expansion of the unrenormalized QED vertex

amplitude. We find that the real part of the ^ ff & contribution to _F2(0)

vanishes, but that an imaginary part develops for q 2 between zero and 4m 2

which diverges in the q 2 ® 0 limit.
These results are discussed in Section 4. They are first shown to be

gauge parameter independent provided the same fermion mass characterizes

(1.1) and (1.2), results suggestive of a dynamical rather than a Lagrangian

origin for the common fermion mass. We then argue that a change in the

kinematic threshold for the production of physical elementary particle states

is the most sensible interpretation of the imaginary part obtained in Section
3, indicative of the production of Goldstone bosons anticipated from the

dynamical breakdown of chiral symmetry ( ^ ff & Þ 0).

Up to this point in the paper, the question of condensate contributions

to the anomalous magnetic moment has been posed entirely in the abstract.

In Section 4, we discuss the applicability of the results of Section 3 to

quarks, as fundamental Dirac fermions which form nonzero ^ qq & condensates
whose contribution to _F2(0) is precisely of the type investigated in

Section 3. Although quarks are confined, their QED magnetic moments

and form factors are nevertheless of phenomenological interest for extracting

baryon magnetic moments (Beg et al., 1964; Perkins, 1987) and form-

factor behavior. In the absence of condensate contributions, _F2(q
2)

develops an imaginary part when q 2 . 4m 2, corresponding to the production
of on-shell fermion±antifermion pairs. The ^ qq & contributions are seen to

reduce this threshold to q 2 5 0, which can most easily be understood

(assuming m is dynamical) to correspond to the kinematical production

of massless pions, the Goldstone bosons of the chiral symmetry breaking
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whose order-parameter manifestation is the ^ qq & condensate itself. Thus,

the change in the onset of an imaginary part in _F2(q
2) may reflect the

transition of QCD to low-energy hadronic physics.

2. THE ELECTROMAGNETIC VERTEX CORRECTION: A
METHODOLOGICAL REVIEW

The purely perturbative three-point Green’ s function (Fig. 1) containing
the truncated fermion±antifermion-photon vertex Green’ s function

2 iQe G s ( p2, p1) is expressed in terms of Heisenberg fields c i , c j , A m

as follows:

[G m ( p2, p1)]il

5 F 2 i

( p2 2 p1)
2 1 g m s 2 (1 2 j )

( p2 2 p1) m ( p2 2 p1) s

( p2 2 p1)
2 2 G F i

p¤2 2 m G ij

3 F i

p¤1 2 m G kl

[ 2 ieQ G s
jk( p2, p1)]

5 # d 4x8 # d 4y8 ^ 0 | T c i (x8)A m (0) c l( y8) | 0 & Heise
1 ip2 ? x8

e 2 ip1 ? y8
(2.1)

where i 2 l are Dirac indices. The unrenormalized one-loop vertex correction

L m within G m ( 5 g m 1 L m 1 . . .) is obtained via a Wick±Dyson expansion
of the vacuum expectation value in (2.1) evaluated in the interaction picture

(Dirac indices have been dropped):

^ 0 | T c (x8)A m (0) c ( y8) | 0 & Heis

5 ^ 0 | T c (x8) exp F 2 iQe # d 4w c (w) g t c (w)A t (w) G A m (0) c ( y8) | 0 & (2.2)

Fig. 1. The fermion ±antifermion photon Green’ s function.
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The one-loop correction to G m in (2.1) is then found to be (Fig. 2)

[ D G m ( p2, p1)]
1 2 loop

5 ( 2 iQe)3 # d 4x8 # d 4y8 e 1 ip2 ? x8
e 2 ip1 ? y8

3 F # d 4x # d 4y # d 4z ^ 0 | T c (x8) c (x) | 0 & g t

3 ^ 0 | T c (x) c ( y) | 0 & g s ^ 0 | T c ( y) c (z) | 0 & g r

3 ^ 0 | T c (z) c ( y8) | 0 & ^ 0 | TA m (0)A s ( y) | 0 &

3 ^ 0 | TA t (x)A r (z) | 0 & G (2.3)

where the term in square brackets on the rhs is just the fully contracted third-

order term in the Wick±Dyson expansion of (2.2). Equation (2.3) can be

evaluated by explicit use of the configuration-space fermion and photon

propagators

^ 0 | T c (x) c ( y) | 0 & 5 i # d 4q

(2 p )4 e 2 iq ? (x 2 y) 1

q¤ 2 m
(2.4)

^ 0 | TA t (x)A r (z) | 0 & 5 2 i # d 4k

(2 p )4 e 2 ik? (x 2 z) g t r

k 2 (2.5)

We have omitted Dirac and color indices from (2.4), as well as the gauge-

dependent longitudinal term from (2.5), as it does not contribute to the vertex
function. Upon substitution of configuration-space propagators (2.4) and (2.5)

into (2.3) and integration over the configuration-space variables {x8, y8, x, y,

Fig. 2. The one-loop purely perturbative contribution to the fermion ±antifermion-photon

Green’ s function in configuration space.
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z}, one obtains a string of delta functions which, when integrated over, yield

the usual momentum-space Feynman propagator functions:

[ D G m ( p2, p1)]
1 2 loop
il

5 ( 2 iQe)3 # d 4q1

(2 p )4 # d 4q2

(2 p )4 # d 4q3

(2 p )4 # d 4q4

(2 p )4 # d 4k1

(2 p )4 # d 4k2

(2 p )4

3 1 i

q¤1 2 m 2 g t 1 i

q¤2 2 m 2 g s 1 i

q¤3 2 m 2 g r 1 i

q¤4 2 m 2
3 1 2 ig m s

k 2
1 2 1 2 ig t r

k 2
2 2 (2 p )20 d 4(q1 2 p2) d 4(q4 2 p1)

3 d 4( p2 2 q2 2 k2) d 4(q2 2 q3 1 k1) d 4(q3 2 p1 1 k2)

5 F 2
ig m s

( p2 2 p1)
2 G F i

p¤2 2 m G ij F i

p¤1 2 m G kl

( 2 iQe)

3 H 2
i (Qe)2

(2 p )4 # d 4k2

k 2
2

g t ( p¤2 2 k¤2 1 m)

( p2 2 k2)
2 2 m 2 g s ( p¤1 2 k¤2 1 m)

( p1 2 k2)
2 2 m 2 g t J

jk

(2.6)

Factorization of the external legs is explicit in the final line of (2.6).
The curly bracketed expression in the final line of (2.6) corresponds to the

unrenormalized vertex correction [ L s ( p2, p1)]. Specifically, one can define

the unrenormalized vertex correction to be u( p2) L m ( p2, p1)u (p1), where

(q m [ p m
2 2 p m

1 )

L m ( p2, p1) [ e 2Q 2 F R (q 2) g m 1
2S (q 2)

m
( p m

1 1 p m
2 ) G (2.7)

such that the unrenormalized vertex is 2 ieQ G m [ 2 ieQ( g m 1 L m ( p2, p1))

with eQ the electromagnetic fermion charge. This unrenormalized vertex can

be expressed as follows in terms of the renormalized vertex form factors

F1(q
2), _F2(q

2):

u( p2)[ g m 1 L m ( p2, p1)]u (p1)

5 u( p2) [(1 1 e2Q2 [R(q2) 1 4S(q2)]) g m 2 2e2Q2S(q2)i s m n q n /m]u(p1)

[ Z u( p2)[F1(q
2) g m 1 i s m n q n _F2 (q2)/2m]u(p1) (2.8)

The rescaling in the final line of (2.8) is accomplished through the renormal-

ization condition that F1(0) 5 1, in which case the (divergent) constant Z is

given to order e2 by

Z 5 1 1 e2Q2(R(0) 1 4S(0)) (2.9)
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To leading order in e2, one then finds that

F1(q
2) 5 1 1 e2Q2[(R8(0) 1 4S8(0))q2 1 2(q4)] 1 2(e4) (2.10)

_F2(q
2) 5 2 4e2Q2S(q2) 1 2(e4) (2.11)

The q2 ® 0 limit of equation (2.11) gives the 2( a ) anomalous magnetic

moment of QED, which (in contrast to F1) devolves solely from the vertex

correction and is insensitive to additional (vacuum-polarization, self-energy,

and bremsstrahlung) diagrams.
The purely perturbative contribution to this quantity can be extracted by

straightforward methods from the unrenormalized vertex correction in (2.6):

[ L m ( p2, p1)]
pert 5 2 i(Qe)2 # d 4k

(2 p )4

g t ( p¤2 2 k¤ 1 m) g m ( p¤1 2 k¤ 1 m) g t

k2[( p2 2 k)2 2 m2][( p1 2 k)2 2 m2]

5 2 i(Qe)2{[ 2 2p¤1 g m p¤2 1 4m( p m
1 1 p m

2 ) 2 2m 2 g m ]I( p2, p1)

1 [2 g r g m p¤2 1 2p¤1 g m g r 2 8mg m r ] I r ( p2, p1)

2 2 g r g m g s I r s ( p2, p1)} (2.12)

The integrals I, I r , and I r s are respectively defined by

[I( p2, p1); I r ( p2, p1); I r s ( p2, p1)]

[ # d nk

(2 p )n

[1; k r ; k r k s ]

(k2 2 e 2)[(k 2 p2)
2 2 m2][(k 2 p1)

2 2 m2]
(2.13)

In (2.13), ultraviolet divergences are regulated via dimensional regularization,

and infrared divergences are regulated via the ª photon massº e . These integrals

are easily evaluated by standard methods. If we evaluate these integrals in

terms of a set of constants a0,1, b0,1, . . . , such that

I( p2, p1) 5 i{a0 /m2 1 a1q
2/m4 1 2(q4)} (2.14)

I r ( p2, p1) 5 i[( p1 r 1 p2 r )/m
2]{b0 1 b1q

2/m2 1 2(q4)} (2.15)

I r s ( p2, p1) 5 ig r s {c0 1 c1q
2/m2 1 2(q4)}

1 i[( p1 r p1 s 1 p2 r p2 s )/m2]{d0 1 d1q
2/m2 1 2(q4)}

1 i[( p1 r p2 s 1 p2 r p1 s )/m2]{e0 1 e1q
2/m2 1 2(q4)} (2.16)

we can then express the vertex correction (2.12) in the form (2.7):

R(q2) 5 [4a0 2 16b0 1 4c0 1 4d0 1 4e0]

1 (q2/m2)[ 2 2a0 1 4a1 1 4b0 2 16b1 1 4c1

1 4d1 2 2e0 1 4e1] 1 2(q4/m4) (2.17)
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S(q2) 5 [2b0 2 2d0 2 2e0]

1 (q2/m2) [2b1 2 2d1 2 2e1] 1 2(q4/m4) (2.18)

The set of constants is determined via explicit evaluation of the integrals

in (2.13):

a0 5
1

32 p 2 ln 1 e 2

m2 2 , a1 5
1

192 p 2 F 1 1 ln 1 e 2

m2 2 G (2.19)

b0 5 2
1

32 p 2 , b1 5 2
1

192 p 2 (2.20)

c0 5
1

64 p 2 F 2
2

n 2 4
2 g E 2 ln 1 m2

4 p m 2 2 1
1

2 G , c1 5
1

384 p 2 (2.21)

d0 5 2
1

96 p 2 , d1 5 2
1

640 p 2 (2.22)

e0 5 2
1

192 p 2 , e1 5 2
1

960 p 2 (2.23)

As is evident from comparison of (2.11) and (2.18), the anomalous magnetic

moment is clearly finite,

_F2(0) 5 2 8e2Q2(b0 2 d0 2 e0) 5 e2Q2/8 p 2 (2.24)

which is the famous result of Schwinger and Feynman (Schwinger, 1948;

Feynman, 1949). The F1 form-factor slope in the vertex correction (2.10) is

also a classical result of perturbative QED,

F 81(0) 5 e2Q2[R8(0) 1 4S8(0)]

5
e2Q2

m2 [ 2 2a0 1 4a1 1 4b0 2 8b1 1 4c1 2 4d1 2 2e0 2 4e1]

5 2
e2Q2

24 p 2m2 F 3

4
1 ln

e 2

m 2 G (2.25)

although the removal of the photon mass from the physically measurable

form-factor slope entails careful consideration of soft external-photon (brems-

strahlung) diagrams (Block and Nordsieck, 1937; Yennie et al., 1955).
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3. ^ ff & CONTRIBUTION TO _F2(q
2)

In Fig. 3a [3b], we replace the perturbative configuration-space propaga-

tor ^ 0 | T c (x) c ( y) | 0 & [ ^ 0 | T c ( y) c (z) | 0 & ] of equation (2.3) with the ª nonperturba-

tive propagatorº (Yndurain, 1989) ^ 0 | : c (x) c ( y): | 0 & [ ^ 0 | : c ( y) c (z): | 0 & ], the

vacuum-expectation value of the normal-ordered pair of fermion fields that

also arises from the Wick±Dyson expansion. Such vacuum-expectation values

are routinely disregarded in purely perturbative calculations, in which the
vacuum is fully annihilated by Fock-space annihilation operators, but must

be taken into consideration if the vacuum has nonperturbative content (Pascual

and Tarrach, 1984). The configuration-space nonperturbative propagator nec-

essarily entails a replacement of (2.4) with the following expression (Bagan

et al., 1994; see also Elias et al., 1988; Yndurain, 1989):

^ 0 | : c (x) c ( y): | 0 & 5 # d 4k e 2 ik ? (x 2 y)( g ? k 1 m)^(k) (3.1a)

Fig. 3. The leading fermion ±antifermion condensate contributions to the fermion ±antifermion-

photon Green’ s function in configuration space, with nonperturbative propagators replacing

internal fermion lines as indicated in (3.2) and (3.3).
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where

# d 4k ^(k)e 2 ik ? x [ 2 ^ ff & J1(m ! x 2)/(6m2 ! x 2) (3.1b)

with ^ ff & identified as the (appropriately normalized) fermion±antifermion

condensate of (1.1). As is evident from a comparison of (3.1a) to (2.4), the

momentum-space expressions for the nonperturbat ive propagator contribu-

tions to Fig. 3a and Fig. 3b respectively entail the following alterations (Bagan
et al., 1994) in the final line of (2.6):

Fig. 3a:
1

(k2 2 p1)
2 2 m 2 ® 2 i(2 p )4^(k2 2 p1) (3.2)

Fig. 3b:
1

(k2 2 p2)
2 2 m2 ® 2 i(2 p )4^(k2 2 p2) (3.3)

(The contribution vanishes from the graph in which both fermion internal lines

are simultaneously altered.) The net effect of these changes is to reproduce the
Feynman amplitude given in (2.12), but with the Feynman integrals (2.13)

altered as follows:

# d nk

(2 p )n

[1; k r ; k r k s ]

(k2 2 e 2)[(k 2 p2)
2 2 m2][(k 2 p1)

2 2 m2]

® 2 i # d 4k [1; k r ; k r k s ]^(k 2 p1)

(k2 2 e 2)[(k 2 p2)
2 2 m2]

2 i # d 4k [1; k r ; k r k s ]^(k 2 p2)

(k2 2 e 2)[(k 2 p1)
2 2 m2]

(3.4)

We have returned to explicit use of four-dimensional integration because the

new integrals are all UV-finite.

Thus we retain the form of the amplitude (2.12), but with the integrals

I, I r , I r s now being given (after a trivial shift of integration variable)
by

I (p2, p1) 5 2 i # d 4k ^(k)

[(k 1 p1)
2 2 e 2][(k 1 p1 2 p2)

2 2 m 2]

2 i # d 4k ^(k)

[(k 1 p2)
2 2 e 2][(k 1 p2 2 p1)

2 2 m 2]
(3.5)
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I r ( p2, p1) 5 2 i # d 4k (k r 1 p1 r )^(k)

[(k 1 p1)
2 2 e 2][(k 1 p1 2 p2)

2 2 m 2]

2 i # d 4k (k r 1 p2 r )^(k)

[(k 1 p2)
2 2 e 2][(k 1 p2 2 p1)

2 2 m 2]
(3.6)

I r s ( p2, p1) 5 2 i # d 4k (k r 1 p1 r )(k s 1 p1 s )^(k)

[(k 1 p1)
2 2 e 2][(k 1 p1 2 p2)

2 2 m 2]

2 i # d 4k (k r 1 p2 r )(k s 1 p2 s )^(k)

[(k 1 p2)
2 2 e 2][(k 1 p2 2 p1)

2 2 m 2]
(3.7)

Using parametrizations analogous to (2.14) ±(2.16),

I (p2, p1) 5 i!(q 2)/m 2 (3.8)

I r ( p2, p1) 5 i [( p1 r 1 p2 r )/m
2]@(q 2) (3.9)

I r s ( p2, p1) 5 ig r s #(q 2)

1 i [( p1 r p1 s 1 p2 r p2 s )/m 2]$(q 2)

1 i [( p1 r p2 s 1 p2 r p1 s )/m 2]% (q 2) (3.10)

we proceed analogously to the derivation of (2.18) and find that the ^ ff &
contribution to S (q 2) in (2.7) is now given to one-loop order by

D S (q 2) 5 2@(q 2) 2 2$(q 2) 2 2%(q 2) (3.11)

As in (2.24), the fermion±antifermion condensate contribution to the anoma-
lous magnetic moment is then found to be

D _F2(0) 5 2 8(e 2Q 2)(@(0) 2 $(0) 2 %(0)) (3.12)

To proceed further, we need to evaluate the integrals (3.6) and (3.7) that
determine the explicit functions @(q 2), $(q 2), and %(q 2) of (3.9) and (3.10).

To evaluate @(q 2), we need to evaluate the integrals I r ( p2, p1) in equation

(3.6). Using a Feynman-parameter combination of the propagator denomina-

tors, we find for on-shell momenta ( p2
1 5 p 2

2 5 m 2) that

I r ( p2, p1) 5 2 i #
1

0

dz # d 4k (k r 1 p1 r )^(k)

{[k 2 ( p2z 2 p1)]
2 2 m 2z 2 2 e 2(1 2 z)}2

2 i #
1

0

dz # d 4k (k r 1 p2 r )^(k)

{[k 2 ( p1z 2 p2)]
2 2 m 2z 2 2 e 2(1 2 z)}2 (3.13)
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We will drop the photon mass e 2, as any infrared divergences that might

arise in the anomalous magnetic moment [as opposed to F1(q
2)] cannot be

removed by bremsstrahlung corrections. The integrals in (3.13) can be
expressed in terms of the integrals (A.6) and (A.7) of the Appendix, with

p [ p1z 2 p2 or p2z 2 p1, and with m 5 mz. For on-shell momenta, both

definitions of p lead to p 2 5 m 2(1 2 z)2 1 q 2z with q 2 5 ( p2 2 p1)
2. The

results we obtain are valid only for q 2 . 0; the requirement that p 2 . 0, as

discussed immediately following (A.9), necessarily implies q 2 . 0, as z in

p 2 5 m 2(1 2 z)2 1 q 2z ranges over values between zero and one. We then
see from (3.13) that

I r ( p2, p1) 5 2 ip1 r #
1

0

dz R3( p2z 2 p1, mz)

2 ip2 r #
1

0

dz R3( p1z 2 p2, mz)

2 i #
1

0

dz # d 4k k r ^(k)

{[k 2 ( p2z 2 p1)]
2 2 m 2z 2}2

2 i #
1

0

dz # d 4k k r ^(k)

{[k 2 ( p1z 2 p2)]
2 2 m 2z 2}2 (3.14)

where, from the Appendix, we define

R3( p, m ) [ # d 4k ^(k)

[(k 2 p)2 2 m 2]2 (3.15a)

R2( p, m ) [ # d 4k ^(k)

[(k 2 p)2 2 m 2]
(3.15b)

The remaining integrals in (3.14) are of the form

# d 4k k r ^(k)

[(k 2 p)2 2 m 2]2 5 A (p 2)p r (3.16)

If we contract p r into both sides of (3.16) and use the identities p ? k 5
2 1±2 [(k 2 p)2 2 m 2] 1 k 2/2 1 p 2/2 2 m 2/2 and k 2^(k) 5 m 2^(k) [equation

(A.4)], we find that

A( p 2) 5 2
1

2p 2 R2( p, m ) 1
m 2 1 p 2 2 m 2

2p 2 R3( p, m ) (3.17)
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Noting that m 2 5 m 2z 2, p 2 5 m 2(1 2 z)2 1 q 2z, we then find that

I r ( p2, p1)

5 2 ip1 r #
1

0

dz R3( p2z 2 p1, mz)

2 ip2 r #
1

0

dz R3( p1z 2 p2, mz)

2 i #
1

0

dz ( p2 r z 2 p1 r ) F 2
1

2[m 2(1 2 z)2 1 q 2z]
R2( p2z 2 p1, mz)

1
2m 2(1 2 z) 1 q 2z

2 [m 2(1 2 z)2 1 q 2z]
R3( p2z 2 p1, mz) G

2 i #
1

0

dz ( p1 r z 2 p2 r ) F 2
1

2[m 2(1 2 z)2 1 q 2z]
R2( p1z 2 p2, mz)

1
2m 2(1 2 z) 1 q 2z

2[m 2(1 2 z)2 1 q 2z]
R3( p1z 2 p2, mz) G (3.18)

We see from (A.6) and (A.7) of the Appendix that R2( p, m ) and R3( p, m )

depend on p only through p 2:

R2( p1z 2 p2, mz) 5 R2( p2z 2 p1, mz) [ R2[z] (3.19a)

R3( p1z 2 p2, mz) 5 R3( p2z 2 p1, mz) [ R3[z] (3.19b)

and from (3.17) we find that

A [z] [ A (m 2(1 2 z)2 1 q 2z)

5
[2m 2(1 2 z) 1 q 2z]R3[z] 2 R2[z]

2[m 2(1 2 z)2 1 q 2z]
(3.20)

By comparing (3.18) to (3.9), we obtain

@(q 2) 5 m 2 #
1

0

dz [(1 2 z)A [z] 2 R3[z]] (3.21)

To find $(q 2) and %(q 2)in (3.10), we combine the propagator denominators

of (3.7) to obtain
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I r s 5 2 i #
1

0

dz # d 4k
(k r 1 p1 r )(k s 1 p1 s )^(k)

{[k 2 ( p2z 2 p1)]
2 2 m 2z 2}2

2 i #
1

0

dz # d 4k
(k r 1 p2 r )(k s 1 p2 s )^(k)

{[k 2 ( p1z 2 p2)]
2 2 m 2z 2}2

5 1 i( p1 r p1 s 1 p2 r p2 s ) #
1

0

dz [2A[z] 2 R3[z]]

2 i( p1 r p2 s 1 p2 r p1 s ) #
1

0

dz [2zA[z]]

2 i #
1

0

dz k r k s ^(k)

{[k 2 ( p2z 2 p1)]
2 2 m 2z 2}2

2 i #
1

0

dz k r k s ^(k)

{[k 2 ( p1z 2 p2)]
2 2 m 2z 2}2 (3.22)

The remaining integrals in (3.22) are of the form

# d 4k k r k s ^(k)

{(k 2 p)2 2 m 2}2 5 X( p 2)g r s 1 Y( p 2)p r p s (3.23)

in which case we see from comparison of (3.22) to (3.10) that

$(q 2) 5 m 2 #
1

0

dz [2A[z] 2 R3[z] 2 (1 1 z 2)Y [z]] (3.24)

%(q 2) 5 1 m 2 #
1

0

dz [ 2 2zA[z] 1 2zY[z]] (3.25)

where

Y [z] [ Y (m 2(1 2 z)2 1 q 2z) (3.26)

Thus we see through comparison of (3.11) to (3.21), (3.24), and (3.25) that

D S(q 2) 5 2m 2 #
1

0

dz [(1 2 z)2Y [z] 2 (1 2 z)A[z]] (3.27)

To determine Y [z], we first note from (A.4) in the Appendix that contraction

of g r s into (3.23) yields the relation

m 2R3( p, m ) 5 4X( p 2) 1 p 2Y( p 2) (3.28)
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Recalling that p ? k 5 2 1±2 [(k 2 p)2 2 m 2] 1 1±2 (m 2 1 p 2 2 m 2), we see that

contraction of p r p s into (3.23) yields the relation

1

4
R1 2

1

2
(m 2 1 p 2 2 m 2)R2( p, m ) 1

1

4
(m 2 1 p 2 2 m 2)2R3( p, m )

5 p 2X( p 2) 1 ( p2)2Y( p 2) (3.29)

where R1 5 * d 4k ^(k) 5 2 ^ ff & /12m, as shown in the Appendix. Given

m 5 mz, p 2 5 m 2(1 2 z)2 1 q 2z, one can then solve (3.28) and (3.29) for

Y( p 2) to obtain the following:

Y [z] 5 2
1

3[m 2(1 2 z)2 1 q 2z]
{m 2R3[z]

2
1

(m 2(1 2 z)2 1 q 2z)
[R1 2 2(2m 2(1 2 z) 1 q 2 z)R2[z]

1 [2m 2(1 2 z) 1 q 2 z]2R3[z]]} (3.30)

The integral (3.27) can be evaluated using the expressions (3.20) and (3.30)
to express A [z] and Y [z] in terms of R1, R2[z], and R3[z]. We note from (A.6)

and (A.7) of the Appendix that for p 2 5 m 2(1 2 z)2 1 q 2z, m 2 5 m 2z 2, and

4m 2 . q 2 . 0,

R2[z] 5
^ ff &

24m 3

[ 2 2m 2(1 2 z) 2 q 2z 1 iz! 4m 2q 2 2 q 4]

m 2(1 2 z)2 1 q 2z
(3.31)

R3[z] 5
^ ff &

24m 3[m 2(1 2 z)2 1 q 2z] F 1 1 i
[2m 2(1 2 z) 1 q 2z]

z ! 4m 2q 2 2 q 4 G (3.32)

We note that R2 and R3 have developed imaginary parts when q 2 is between
zero and 4m 2; R2 and R3 are both real if q 2 . 4m 2. Such a branch cut

between q 2 5 0 and q 2 5 4m 2 is also seen to occur in the quark±antiquark

condensate contributions to two-point current-correlation functions (Bagan

et al., 1986; Elias et al., 1994), and is discussed in detail in the section that

follows. We find from substitution of (3.20) and (3.30) ±(3.32) into (3.27) that

D S (q 2) 5 2m 2 #
1

0

dz (1 2 z) F 2
^ ff & (1 2 z)

36m [m 2(1 2 z)2 1 q 2z]2

2
[5m 2(1 2 z)2 1 q 2z (1 2 4z)]

6[m 2(1 2 z)2 1 q 2z]2 R2[z]

2
[m 2q 2z (1 2 z)(3 1 5z) 1 q 4z 2(1 1 2z)]

6[m 2(1 2 z)2 1 q 2z]2 R3[z] G (3.33)
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Explicit evaluation of the real and imaginary parts of (3.33) for 0 , q 2 ,
4m 2 yields the following results:

Re[ D S (q 2)] 5 0 (3.34)

Im[ D S (q 2)] 5 2
^ ff &

12m ! 4m 2q 2 2 q 4
(3.35)

where D _F2(q
2) 5 2 4e 2Q 2 D S (q 2).

4. DISCUSSION

4.1. Gauge Invariance

In an arbitrary covariant gauge, the contribution of Fig. 3a is propor-

tional to

# d 4k $ t s (k, j )
^(k 2 p1) g t (k¤ 2 p¤2 2 m) g m (k¤ 2 p¤1 2 m) g s

[(k 2 p2)
2 2 m 2]

[ L (a)( p2, p1) 2 (1 2 j ) L (a)
j ( p2, p1) (4.1)

as is evident from (3.3) and (2.6), where j is the photon-propag ator gauge

parameter

$ t s (k) 5
g t s

k 2 2 (1 2 j )
k t k s

k 4 (4.2)

In (4.1), L (a) is the (Feynman-gauge) contribution we have already considered,
and L (a)

j is the contribution arising from the second term in (4.2). Gauge-

parameter independence is explicit provided u( p2) L (a)
j ( p2, p1)u (p1) 5 0, i.e.,

provided the k t k s /k 4 term in $ t s does not contribute to the on-shell vertex

correction. To demonstrate this, we consider

L a
j ( p2, p1)u (p1)

5 # d 4k ^(k 2 p1)k¤(k¤ 2 p¤2 2 m) g m (k¤ 2 p¤1 2 m)k¤

k 4[(k 2 p2)
2 2 m 2]

u (p1)

Þ
k 2 p1 ® k # d 4k (k¤ 1 p¤1)(k¤ 1 p¤1 2 p¤2 2 m) g m ^(k)(k¤ 2 m)(k¤ 1 p/ 1)u (p1)

[(k 1 p1)
2]2[(k 1 p1 2 p2)

2 2 m 2]

(4.3)

^(k) is a Dirac scalar that can be moved past gamma-matricesÐ we have

moved it to the right in (4.3) in order to focus on the factors immediately

preceding u( p1):
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^(k)(k¤ 2 m)(k¤ 1 p¤1)u( p1)

5 ^(k)(k 2 2 m 2)u( p1)

5 0 (4.4)

The second to last line of (4.4) is a consequence of p¤1u (p1) 5 mu( p1), and

the final line is a consequence of k 2^(k) 5 m 2^(k), as discussed in

the Appendix [equation (A.4)]. Thus we see that L a
j ( p2, p1)u (p1) 5 0. A vir-

tually identical argument shows the gauge-dependent contribution from
Fig. 3b annihilates u( p2) on-shell. Consequently, we see that the vertex

correction u( p2) L m ( p2, p1)u (p1) is manifestly gauge-parameter independent:

u( p2) L (a)
j ( p2, p1)u (p1) 5 0.

This demonstration of gauge-parameter independence, however, is con-

tingent upon having the same fermion mass enter the perturbative and nonper-

turbative fermion propagators (2.4) and (3.1), as has been assumed throughout
the previous section’ s calculation. Any attempt to distinguish between these

masses will destroy the gauge-parameter independence of the result (e.g., He,

1996). The gauge-parameter independence of electroweak two-point functions

has similarly been shown (Ahmady et al., 1989) to be contingent, for a

given flavor, upon having the same fermion mass enter from nonperturbative

vacuum expectation values (1.1) as appears in the corresponding fermion
propagator function (1.2).

An entirely analogous situation arises in QCD when one considers

the fermion±antifermion condensate contribution to the fermion two-point

function. The apparent gauge-parameter dependence first seen for this contri-

bution (Pascual and de Rafael, 1982) has been shown to disappear on-shell

(Elias and Scadron, 1984) provided the mass that appears in the fermion
propagator (2.4) is consistent with that appearing in the vacuum expectation

value (1.1). Since this latter mass is necessarily dynamical, gauge-parameter

independence suggests that the fermion mass appearing throughout the calcu-

lation of the previous section be understood to be dynamical rather than

Lagrangian in origin (Elias and Scadron, 1984; Reinders and Stam, 1986),
a reflection of the chiral noninvariance of the vacuum necessary for (1.1) to

be nonzero (i.e., for ^ ff & Þ 0).

4.2. Interpretation of Im( D S(q2))

As noted in the previous section, the integrals R2[z] and R3[z] are seen

to contribute an imaginary part to the vertex function when q 2 is between 0
and 4m 2, behaviour that is also evident in the fermion±antifermion condensate

contributions to two-point functions (Bagan et al., 1986; Elias et.al., 1993).

Although imaginary parts of Feynman amplitudes are signals of physical

intermediate states, the region 0 , q 2 , 4m 2 is clearly beneath the q 2 5
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4m 2 kinematic threshold for the production of a physical fermion±antifermion

( ff ) pair. Nevertheless, this 0 , q 2 , 4m 2 branch cut, when augmented by

the purely perturbative ff-production branch cut beginning at q 2 5 4m 2, may
be associated with the q 2 5 0 production threshold for Goldstone bosons

associated with chiral symmetry breaking. The internal consistency of such

a picture necessitates identification of m with a dynamical mass, as opposed

to a mass that appears in the Lagrangian and that explicitly breaks Lagrangian

chiral symmetry; e.g., the pion is massless only in the limit of Lagrangian

chiral symmetry (zero current-quark mass). As noted above, such a dynamical
fermion mass is expected to arise from the chiral noninvariance of the QCD

vacuum itself, and can be related directly to the ^ ff & order parameter character-

izing chiral noninvariance (Politzer, 1976; Elias and Scadron, 1984). We have

also seen above that such an interpretation is strongly suggested by gauge

invariance. Thus it would appear that the nonzero imaginary part occurring

in (3.35) may be a kinematic manifestation of the Goldstone theorem, sug-
gesting that the theory now contains the zero-mass meson anticipated from

a dynamical breakdown ( ^ ff & Þ 0) of Lagrangian chiral symmetry.

4.3. Quarks?

Although the field-theoretic calculations presented in this paper have

been posed almost entirely in the abstract, there are clear reasons to explore

their applicability to the electromagnetic properties of quarks. Quarks couple

to both QED and QCD interactions. Even though the latter are deemed

entirely responsible for the existence of ^ qq & condensates, such condensates

necessarily contribute to Feynman amplitudes from which quark electromag-
netic properties are extracted.

As remarked in the Introduction, such properties are of evident interest

to quark-model estimates of hadron properties. For example, the construction

of proton and neutron magnetic moments from the magnetic moments of

Dirac-fermion quark constituents (Beg et al., 1964), one of the very earliest

successes of the nonrelativistic quark model, is sensible only if the quark
masses employed are vastly larger [2(300 MeV)] than those masses antici-

pated from the QCD Lagrangian [2(5±10 MeV)]. Thus, there is a clear

phenomenological role for a dynamical mass in quark-model physics, even

though such a larger mass may really represent the inverse length of a

confinement radius.

Any application of the calculation presented in Section 3 to quark electro-
magnetic properties needs to recognize that QED and QCD cannot be treated

in isolation. Not only is the chiral-noninvariant QCD vacuum the ª standard-

modelº vacuum that quarks actually experience, suggesting the need to include

^ qq & contributions; the photon exchanges of QED in isolation must also be
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augmented by gluon exchanges. Consequently, the spin-1 internal lines of

Fig 3 represent photons and gluons, entailing substitution of [e 2Q 2 1
g 2

sT (R)] for all factors of e 2Q 2 appearing in Section 3. This change becomes
problematic in the q 2 ® 0 limit, a region believed to be inaccessible to

perturbative QCD, though there exists evidence (and considerable prejudice)

for a freezing out of the effective QCD coupling gs to not overly large values

at small momentum transfers (Mattingly and Stevenson, 1992; Stevenson,

1994: Ellis et al., 1997; Baboukhadia et al., 1997; Gardi and Karliner, 1998).

Similarly, the nonabelian character of QCD leads to a vastly richer set of
gluon bremsstrahlung graphs contributing to F1(q

2); it is precisely for this

reason we have focused on _F2, a quantity insensitive to such graphs.

Subject to all these concerns, it is of interest to speculate on the applicability

of the previous section’ s results to phenomenological quark properties. Naively,

the result (3.34) would imply the absence of a ^ qq & contribution to the quark

magnetic moment, particularly if the divergence in the imaginary part at q 2 5
0, as seen from equation (3.35), is attributable to the production of zero-mass

pions. Moreover, an alteration in the kinematic production threshold from 4m 2

to zero may reflect QCD’s transition from a quark-gluon gauge theory to true
low-energy hadronic physics. As discussed above, m is understood in such a

picture to be the 2(300 MeV) dynamical quark mass characterizing the quark
magneton in the static quark model. The success of such a picture appears not

to be compromised by ^ qq & effects, if (3.34) is taken at face value.

When q 2 . 4m 2, however, the quark-condensate contribution to _F2(q
2)

is entirely real:

D S (q 2) 5
^ qq &

12m ! q 4 2 4m 2q 2
(4.5)

Even though m is understood here to be dynamical [ ^ qq & /m , m 2 (Politzer,

1976; Elias and Scadron, 1984)], we have no explanation for the divergence

in (4.5) as q 2 ® 4m 2 from above. One does see from (4.5) that the quark-

condensate contribution to _F2(q
2) goes like 1/q 2 in the large-q 2 limit.

Such behavior also characterizes (up to logarithms) the purely-perturbative
contributions to _F2(q

2) discussed in Section 2, and can be linked via quark-

counting rules to the 1/Q 6 behavior of the nucleon form factor F N
2 (Q 2)

(Brodsky and Lepage, 1989).

Finally, we point out that the large-Q 2 behavior of the quark-condensate

contribution (4.5) is not suppressed relative to the purely perturbative contri-

bution. On dimensional grounds, one might expect an 2[m ^ qq & /Q 4] quark-
condensate contribution that is suppressed relative to the purely perturbative

contribution at short distances. Such behavior is clearly unsupported by (4.5),

which suggests that the nonperturbative order parameter ^ qq & may leave

footprints even in the deep-inelastic domain.
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APPENDIX: FEYNMAN INTEGRALS OVER THE
NONPERTURBATIVE PROPAGATOR FUNCTION ^(k)

The vacuum expectation value of a normal-ordered pair of condensing

fermion±antifermion fields may be expressed as follows (Bagan et al., 1993,
1994; Yndurain, 1989):

^ 0 | :f (x)f(0): | 0 &

5 2
^ ff &
6m 2 (i g m - m 1 m)[J1(m ! x 2)/ ! x 2]

[ # d 4k e 2 ikx( g m k m 1 m)^(k) (A.1)

where ^ is the Fourier transform

# d 4k e 2 ik? x^(k) 5 2
^ ff &
6m 2

J1(m ! x 2)

! x 2
(A.2)

which is well defined for causal Minkowskian separations (x 2 . 0). The

normalization chosen for ^ ff & is discussed in Section 1. The second line of

(A.1) is a solution to the free-particle Dirac equation.

(i g m - m 2 m) ^ 0 | :f (x)f(0): | 0 & 5 0 (A.3)

Application of (A.3) to the final expression on the right-hand side of (A.1)

implies that (Bagan et al., 1994)

k 2^(k) 5 m 2^(k) (A.4)

Let us now consider the following integrals arising in the text:

R1 [ # d 4k ^(k) 5 2 ^ ff & /12m (A.5)

R2( p, m ) [ # d 4k ^(k)

( p 2 k)2 2 m 2 1 i | e |
5 2

^ ff &
24m 3p 2

3 [ p 2 1 m 2 2 m 2 2 ! [ p 2 2 (m 2 m )2][ p 2 2 (m 1 m )2]] (A.6)

R3( p, m ) [ # d 4k ^(k)

[( p 2 k)2 2 m 2 1 i | e | ]2

5
^ ff &

24m 3p 2 F 1 2
p 2 1 m 2 2 m 2

[ p 2 2 (m 2 m )2][ p 2 2 (m 1 m )2] G (A.7)

Equations (A.6) and (A.7) are demonstrably valid only for p 2 . 0, as dis-

cussed below.
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The integral R1 is obtained from the x ® 0 limit of (A.2). To evaluate

the integral R2( p, m ), we first utilize (A.4) to replace k 2 with m 2, and we

then utilize the positivity of | e | to exponentiate the propagator:

R2( p, m ) 5 2 i #
`

0

d h e i h ( p2 1 m2 2 m 2 1 i | e | ) # d 4k e 2 ik ? (2p h ) ^(k)

5
i ^ ff &
6m 2 #

`

0

d h e 2 h [ | e | 2 i(p2 1 m2 2 m 2)] J1(2 h m ! p 2)/(2 h ! p 2) (A.8)

where the final line of (A.8) is obtained directly from (A.2) with x replaced
by 2 h p. The resulting integral over h is evaluated through use of the tabulated

integral (Gradshteyn and Ryzhik, 1980)

#
`

0

e 2 h a J1( h b ) d h / h 5 ( ! a 2 1 b 2 2 a )/ b , (Re a . | Im b | ) (A.9)

Since Re a is identified with the positive infinitesimal | e | and b is

identified with 2m ! p 2 in (A.8), p 2 must be positive. The following results

are obtained for physical (Minkowskian) momenta:

R2( p, m ) 5
i ^ ff &

12m 2 ! p 2

3 F 2 i
[ ! ( p2 1 m 2 2 m 2)2 2 4m 2p 2 2 ( p2 1 m 2 2 m 2)]

2m ! p 2 G
(A.10)

which is easily rearranged to yield (A.6).

To evaluate the integral R3( p, m ), we again utilize (A.4) to replace k 2

with m 2 and then exponentiate the propagator:

R3( p, m ) 5 2 #
`

0

d h h e i h ( p2 1 m2 2 m 2 1 i | e | ) # d 4k ^(k)e 2 ik ? (2 h p)

5
^ ff &

12m 2 ! p 2 #
`

0

d h e 2 h [ | e | 2 i(p2 1 m2 2 m 2)] J1(2 h m ! p 2) (A.11)

The final integral in (A.11) is evaluated through use of the integral

#
`

0

e 2 h a J1( h b ) d h 5
! a 2 1 b 2 2 a

b ! a 2 1 b 2
(A.12)

by taking the partial derivative of both sides of (A.9) with respect to a . Using

(A.12), which is again demonstrably valid ( | e | . | Im 2 h ! p 2 | ) only for p 2 .
0, we easily obtain the result (A.7).



2788 Elias and Sprague

It is evident from these procedures that any Feynman integrals of the form

RN 1 1( p, m ) [ # d 4k ^(k)

[( p 2 k)2 2 m 2 1 i | e | ]N (A.13)

can be evaluated through use of (A.2) and (A.4), exponentiation of the
denominator, and successive differentiations of (A.9):

RN 1 1 ( p, m )

5
( 2 i)N

(N 2 1)! #
`

0

d h h N 2 1 e 2 h [ | e | 2 i(p2 1 m2 2 m 2)]

3 # d 4k ^(k) e 2 ik ? (2p h )

5 2
( 2 i)N

(N 2 1)!

^ ff &

12m 2 ! p 2 #
`

0

d h h N 2 2e 2 h [ | e | 2 i(p2 1 m2 2 m 2)] J1(2m h ! p 2)

5
i N ^ ff &

(N 2 1)! 12m 2 ! p 2

- N 2 1

- a N 2 1 1 ! a 2 1 b 2 2 a
b 2 Z a 5 2 i( p2 1 m2 2 m 2), b 5 2m ! p2

(A.14)
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